3.312 \(\int x (f+g x^2) \log (c (d+e x^2)^p) \, dx\)

Optimal. Leaf size=94 \[ \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{4 g}-\frac {p (e f-d g)^2 \log \left (d+e x^2\right )}{4 e^2 g}-\frac {p x^2 (e f-d g)}{4 e}-\frac {p \left (f+g x^2\right )^2}{8 g} \]

[Out]

-1/4*(-d*g+e*f)*p*x^2/e-1/8*p*(g*x^2+f)^2/g-1/4*(-d*g+e*f)^2*p*ln(e*x^2+d)/e^2/g+1/4*(g*x^2+f)^2*ln(c*(e*x^2+d
)^p)/g

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2475, 2395, 43} \[ \frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{4 g}-\frac {p (e f-d g)^2 \log \left (d+e x^2\right )}{4 e^2 g}-\frac {p x^2 (e f-d g)}{4 e}-\frac {p \left (f+g x^2\right )^2}{8 g} \]

Antiderivative was successfully verified.

[In]

Int[x*(f + g*x^2)*Log[c*(d + e*x^2)^p],x]

[Out]

-((e*f - d*g)*p*x^2)/(4*e) - (p*(f + g*x^2)^2)/(8*g) - ((e*f - d*g)^2*p*Log[d + e*x^2])/(4*e^2*g) + ((f + g*x^
2)^2*Log[c*(d + e*x^2)^p])/(4*g)

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2395

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((f + g
*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n]))/(g*(q + 1)), x] - Dist[(b*e*n)/(g*(q + 1)), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2475

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
 x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Intege
rQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])

Rubi steps

\begin {align*} \int x \left (f+g x^2\right ) \log \left (c \left (d+e x^2\right )^p\right ) \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int (f+g x) \log \left (c (d+e x)^p\right ) \, dx,x,x^2\right )\\ &=\frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{4 g}-\frac {(e p) \operatorname {Subst}\left (\int \frac {(f+g x)^2}{d+e x} \, dx,x,x^2\right )}{4 g}\\ &=\frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{4 g}-\frac {(e p) \operatorname {Subst}\left (\int \left (\frac {g (e f-d g)}{e^2}+\frac {(e f-d g)^2}{e^2 (d+e x)}+\frac {g (f+g x)}{e}\right ) \, dx,x,x^2\right )}{4 g}\\ &=-\frac {(e f-d g) p x^2}{4 e}-\frac {p \left (f+g x^2\right )^2}{8 g}-\frac {(e f-d g)^2 p \log \left (d+e x^2\right )}{4 e^2 g}+\frac {\left (f+g x^2\right )^2 \log \left (c \left (d+e x^2\right )^p\right )}{4 g}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 98, normalized size = 1.04 \[ \frac {1}{2} f \left (\frac {\left (d+e x^2\right ) \log \left (c \left (d+e x^2\right )^p\right )}{e}-p x^2\right )+\frac {1}{4} g x^4 \log \left (c \left (d+e x^2\right )^p\right )-\frac {d^2 g p \log \left (d+e x^2\right )}{4 e^2}+\frac {d g p x^2}{4 e}-\frac {1}{8} g p x^4 \]

Antiderivative was successfully verified.

[In]

Integrate[x*(f + g*x^2)*Log[c*(d + e*x^2)^p],x]

[Out]

(d*g*p*x^2)/(4*e) - (g*p*x^4)/8 - (d^2*g*p*Log[d + e*x^2])/(4*e^2) + (g*x^4*Log[c*(d + e*x^2)^p])/4 + (f*(-(p*
x^2) + ((d + e*x^2)*Log[c*(d + e*x^2)^p])/e))/2

________________________________________________________________________________________

fricas [A]  time = 0.76, size = 99, normalized size = 1.05 \[ -\frac {e^{2} g p x^{4} + 2 \, {\left (2 \, e^{2} f - d e g\right )} p x^{2} - 2 \, {\left (e^{2} g p x^{4} + 2 \, e^{2} f p x^{2} + {\left (2 \, d e f - d^{2} g\right )} p\right )} \log \left (e x^{2} + d\right ) - 2 \, {\left (e^{2} g x^{4} + 2 \, e^{2} f x^{2}\right )} \log \relax (c)}{8 \, e^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(g*x^2+f)*log(c*(e*x^2+d)^p),x, algorithm="fricas")

[Out]

-1/8*(e^2*g*p*x^4 + 2*(2*e^2*f - d*e*g)*p*x^2 - 2*(e^2*g*p*x^4 + 2*e^2*f*p*x^2 + (2*d*e*f - d^2*g)*p)*log(e*x^
2 + d) - 2*(e^2*g*x^4 + 2*e^2*f*x^2)*log(c))/e^2

________________________________________________________________________________________

giac [A]  time = 0.17, size = 148, normalized size = 1.57 \[ \frac {1}{8} \, {\left ({\left (2 \, {\left (x^{2} e + d\right )}^{2} \log \left (x^{2} e + d\right ) - 4 \, {\left (x^{2} e + d\right )} d \log \left (x^{2} e + d\right ) - {\left (x^{2} e + d\right )}^{2} + 4 \, {\left (x^{2} e + d\right )} d\right )} g p e^{\left (-1\right )} + 2 \, {\left ({\left (x^{2} e + d\right )}^{2} - 2 \, {\left (x^{2} e + d\right )} d\right )} g e^{\left (-1\right )} \log \relax (c) - 4 \, {\left (x^{2} e - {\left (x^{2} e + d\right )} \log \left (x^{2} e + d\right ) + d\right )} f p + 4 \, {\left (x^{2} e + d\right )} f \log \relax (c)\right )} e^{\left (-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(g*x^2+f)*log(c*(e*x^2+d)^p),x, algorithm="giac")

[Out]

1/8*((2*(x^2*e + d)^2*log(x^2*e + d) - 4*(x^2*e + d)*d*log(x^2*e + d) - (x^2*e + d)^2 + 4*(x^2*e + d)*d)*g*p*e
^(-1) + 2*((x^2*e + d)^2 - 2*(x^2*e + d)*d)*g*e^(-1)*log(c) - 4*(x^2*e - (x^2*e + d)*log(x^2*e + d) + d)*f*p +
 4*(x^2*e + d)*f*log(c))*e^(-1)

________________________________________________________________________________________

maple [C]  time = 0.48, size = 361, normalized size = 3.84 \[ -\frac {i \pi g \,x^{4} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}{8}+\frac {i \pi g \,x^{4} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}}{8}+\frac {i \pi g \,x^{4} \mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}}{8}-\frac {i \pi g \,x^{4} \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{3}}{8}-\frac {i \pi f \,x^{2} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )}{4}+\frac {i \pi f \,x^{2} \mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}}{4}+\frac {i \pi f \,x^{2} \mathrm {csgn}\left (i \left (e \,x^{2}+d \right )^{p}\right ) \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{2}}{4}-\frac {i \pi f \,x^{2} \mathrm {csgn}\left (i c \left (e \,x^{2}+d \right )^{p}\right )^{3}}{4}-\frac {g p \,x^{4}}{8}+\frac {g \,x^{4} \ln \relax (c )}{4}+\frac {d g p \,x^{2}}{4 e}-\frac {f p \,x^{2}}{2}+\frac {f \,x^{2} \ln \relax (c )}{2}-\frac {d^{2} g p \ln \left (e \,x^{2}+d \right )}{4 e^{2}}+\frac {d f p \ln \left (e \,x^{2}+d \right )}{2 e}+\left (\frac {1}{4} g \,x^{4}+\frac {1}{2} f \,x^{2}\right ) \ln \left (\left (e \,x^{2}+d \right )^{p}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(g*x^2+f)*ln(c*(e*x^2+d)^p),x)

[Out]

(1/4*g*x^4+1/2*f*x^2)*ln((e*x^2+d)^p)+1/8*I*Pi*g*x^4*csgn(I*c*(e*x^2+d)^p)^2*csgn(I*c)-1/4*I*Pi*f*x^2*csgn(I*c
*(e*x^2+d)^p)^3-1/8*I*Pi*g*x^4*csgn(I*c*(e*x^2+d)^p)^3+1/4*I*Pi*f*x^2*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^p
)^2-1/8*I*Pi*g*x^4*csgn(I*(e*x^2+d)^p)*csgn(I*c*(e*x^2+d)^p)*csgn(I*c)+1/8*I*Pi*g*x^4*csgn(I*(e*x^2+d)^p)*csgn
(I*c*(e*x^2+d)^p)^2+1/4*I*Pi*f*x^2*csgn(I*c*(e*x^2+d)^p)^2*csgn(I*c)-1/4*I*Pi*f*x^2*csgn(I*(e*x^2+d)^p)*csgn(I
*c*(e*x^2+d)^p)*csgn(I*c)+1/4*ln(c)*g*x^4-1/8*g*p*x^4+1/2*ln(c)*f*x^2+1/4*d/e*g*p*x^2-1/2*f*p*x^2-1/4*d^2*g*p*
ln(e*x^2+d)/e^2+1/2/e*ln(e*x^2+d)*d*f*p

________________________________________________________________________________________

maxima [A]  time = 0.47, size = 99, normalized size = 1.05 \[ -\frac {e p {\left (\frac {e g^{2} x^{4} + 2 \, {\left (2 \, e f g - d g^{2}\right )} x^{2}}{e^{2}} + \frac {2 \, {\left (e^{2} f^{2} - 2 \, d e f g + d^{2} g^{2}\right )} \log \left (e x^{2} + d\right )}{e^{3}}\right )}}{8 \, g} + \frac {{\left (g x^{2} + f\right )}^{2} \log \left ({\left (e x^{2} + d\right )}^{p} c\right )}{4 \, g} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(g*x^2+f)*log(c*(e*x^2+d)^p),x, algorithm="maxima")

[Out]

-1/8*e*p*((e*g^2*x^4 + 2*(2*e*f*g - d*g^2)*x^2)/e^2 + 2*(e^2*f^2 - 2*d*e*f*g + d^2*g^2)*log(e*x^2 + d)/e^3)/g
+ 1/4*(g*x^2 + f)^2*log((e*x^2 + d)^p*c)/g

________________________________________________________________________________________

mupad [B]  time = 0.31, size = 78, normalized size = 0.83 \[ \ln \left (c\,{\left (e\,x^2+d\right )}^p\right )\,\left (\frac {g\,x^4}{4}+\frac {f\,x^2}{2}\right )-x^2\,\left (\frac {f\,p}{2}-\frac {d\,g\,p}{4\,e}\right )-\frac {g\,p\,x^4}{8}-\frac {\ln \left (e\,x^2+d\right )\,\left (d^2\,g\,p-2\,d\,e\,f\,p\right )}{4\,e^2} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*log(c*(d + e*x^2)^p)*(f + g*x^2),x)

[Out]

log(c*(d + e*x^2)^p)*((f*x^2)/2 + (g*x^4)/4) - x^2*((f*p)/2 - (d*g*p)/(4*e)) - (g*p*x^4)/8 - (log(d + e*x^2)*(
d^2*g*p - 2*d*e*f*p))/(4*e^2)

________________________________________________________________________________________

sympy [A]  time = 44.85, size = 139, normalized size = 1.48 \[ \begin {cases} - \frac {d^{2} g p \log {\left (d + e x^{2} \right )}}{4 e^{2}} + \frac {d f p \log {\left (d + e x^{2} \right )}}{2 e} + \frac {d g p x^{2}}{4 e} + \frac {f p x^{2} \log {\left (d + e x^{2} \right )}}{2} - \frac {f p x^{2}}{2} + \frac {f x^{2} \log {\relax (c )}}{2} + \frac {g p x^{4} \log {\left (d + e x^{2} \right )}}{4} - \frac {g p x^{4}}{8} + \frac {g x^{4} \log {\relax (c )}}{4} & \text {for}\: e \neq 0 \\\left (\frac {f x^{2}}{2} + \frac {g x^{4}}{4}\right ) \log {\left (c d^{p} \right )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(g*x**2+f)*ln(c*(e*x**2+d)**p),x)

[Out]

Piecewise((-d**2*g*p*log(d + e*x**2)/(4*e**2) + d*f*p*log(d + e*x**2)/(2*e) + d*g*p*x**2/(4*e) + f*p*x**2*log(
d + e*x**2)/2 - f*p*x**2/2 + f*x**2*log(c)/2 + g*p*x**4*log(d + e*x**2)/4 - g*p*x**4/8 + g*x**4*log(c)/4, Ne(e
, 0)), ((f*x**2/2 + g*x**4/4)*log(c*d**p), True))

________________________________________________________________________________________